\(\int x^3 \tan (d (a+b \log (c x^n))) \, dx\) [158]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 71 \[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=-\frac {i x^4}{4}+\frac {1}{2} i x^4 \operatorname {Hypergeometric2F1}\left (1,-\frac {2 i}{b d n},1-\frac {2 i}{b d n},-e^{2 i a d} \left (c x^n\right )^{2 i b d}\right ) \]

[Out]

-1/4*I*x^4+1/2*I*x^4*hypergeom([1, -2*I/b/d/n],[1-2*I/b/d/n],-exp(2*I*a*d)*(c*x^n)^(2*I*b*d))

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {4593, 4591, 470, 371} \[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=\frac {1}{2} i x^4 \operatorname {Hypergeometric2F1}\left (1,-\frac {2 i}{b d n},1-\frac {2 i}{b d n},-e^{2 i a d} \left (c x^n\right )^{2 i b d}\right )-\frac {i x^4}{4} \]

[In]

Int[x^3*Tan[d*(a + b*Log[c*x^n])],x]

[Out]

(-1/4*I)*x^4 + (I/2)*x^4*Hypergeometric2F1[1, (-2*I)/(b*d*n), 1 - (2*I)/(b*d*n), -(E^((2*I)*a*d)*(c*x^n)^((2*I
)*b*d))]

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 4591

Int[((e_.)*(x_))^(m_.)*Tan[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(e*x)^m*((I - I*E^(2*I*a*d)*
x^(2*I*b*d))/(1 + E^(2*I*a*d)*x^(2*I*b*d)))^p, x] /; FreeQ[{a, b, d, e, m, p}, x]

Rule 4593

Int[((e_.)*(x_))^(m_.)*Tan[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Dist[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)), Subst[Int[x^((m + 1)/n - 1)*Tan[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a
, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])

Rubi steps \begin{align*} \text {integral}& = \frac {\left (x^4 \left (c x^n\right )^{-4/n}\right ) \text {Subst}\left (\int x^{-1+\frac {4}{n}} \tan (d (a+b \log (x))) \, dx,x,c x^n\right )}{n} \\ & = \frac {\left (x^4 \left (c x^n\right )^{-4/n}\right ) \text {Subst}\left (\int \frac {x^{-1+\frac {4}{n}} \left (i-i e^{2 i a d} x^{2 i b d}\right )}{1+e^{2 i a d} x^{2 i b d}} \, dx,x,c x^n\right )}{n} \\ & = -\frac {i x^4}{4}+\frac {\left (2 i x^4 \left (c x^n\right )^{-4/n}\right ) \text {Subst}\left (\int \frac {x^{-1+\frac {4}{n}}}{1+e^{2 i a d} x^{2 i b d}} \, dx,x,c x^n\right )}{n} \\ & = -\frac {i x^4}{4}+\frac {1}{2} i x^4 \operatorname {Hypergeometric2F1}\left (1,-\frac {2 i}{b d n},1-\frac {2 i}{b d n},-e^{2 i a d} \left (c x^n\right )^{2 i b d}\right ) \\ \end{align*}

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(146\) vs. \(2(71)=142\).

Time = 5.64 (sec) , antiderivative size = 146, normalized size of antiderivative = 2.06 \[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=\frac {x^4 \left (2 i e^{2 i d \left (a+b \log \left (c x^n\right )\right )} \operatorname {Hypergeometric2F1}\left (1,1-\frac {2 i}{b d n},2-\frac {2 i}{b d n},-e^{2 i d \left (a+b \log \left (c x^n\right )\right )}\right )+(-2 i+b d n) \operatorname {Hypergeometric2F1}\left (1,-\frac {2 i}{b d n},1-\frac {2 i}{b d n},-e^{2 i d \left (a+b \log \left (c x^n\right )\right )}\right )\right )}{-8-4 i b d n} \]

[In]

Integrate[x^3*Tan[d*(a + b*Log[c*x^n])],x]

[Out]

(x^4*((2*I)*E^((2*I)*d*(a + b*Log[c*x^n]))*Hypergeometric2F1[1, 1 - (2*I)/(b*d*n), 2 - (2*I)/(b*d*n), -E^((2*I
)*d*(a + b*Log[c*x^n]))] + (-2*I + b*d*n)*Hypergeometric2F1[1, (-2*I)/(b*d*n), 1 - (2*I)/(b*d*n), -E^((2*I)*d*
(a + b*Log[c*x^n]))]))/(-8 - (4*I)*b*d*n)

Maple [F]

\[\int x^{3} \tan \left (d \left (a +b \ln \left (c \,x^{n}\right )\right )\right )d x\]

[In]

int(x^3*tan(d*(a+b*ln(c*x^n))),x)

[Out]

int(x^3*tan(d*(a+b*ln(c*x^n))),x)

Fricas [F]

\[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=\int { x^{3} \tan \left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right ) \,d x } \]

[In]

integrate(x^3*tan(d*(a+b*log(c*x^n))),x, algorithm="fricas")

[Out]

integral(x^3*tan(b*d*log(c*x^n) + a*d), x)

Sympy [F]

\[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=\int x^{3} \tan {\left (a d + b d \log {\left (c x^{n} \right )} \right )}\, dx \]

[In]

integrate(x**3*tan(d*(a+b*ln(c*x**n))),x)

[Out]

Integral(x**3*tan(a*d + b*d*log(c*x**n)), x)

Maxima [F]

\[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=\int { x^{3} \tan \left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right ) \,d x } \]

[In]

integrate(x^3*tan(d*(a+b*log(c*x^n))),x, algorithm="maxima")

[Out]

integrate(x^3*tan((b*log(c*x^n) + a)*d), x)

Giac [F(-1)]

Timed out. \[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=\text {Timed out} \]

[In]

integrate(x^3*tan(d*(a+b*log(c*x^n))),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int x^3 \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx=\int x^3\,\mathrm {tan}\left (d\,\left (a+b\,\ln \left (c\,x^n\right )\right )\right ) \,d x \]

[In]

int(x^3*tan(d*(a + b*log(c*x^n))),x)

[Out]

int(x^3*tan(d*(a + b*log(c*x^n))), x)